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Objectives

A key part of building trustworthy software systems is having some basis to
believe that the system will behave as expected in the presence of attacks
and/or failures, as well as design and programming errors. And any basis for
having trust in a computing system will ultimately be grounded in human
comprehension, for only if we can understand and predict how an artifact
behaves can we trust it. Humans are limited in what they can understand,
though. So research to facilitate creating trustworthy systems that are large
and complex must somehow provide a means to amplify trust in artifacts
that humans can understand. We need the means to leverage components
we do trust and the means to transfer trust from one part of a system to
another.

The objective of this project was to investigate two particularly promis-
ing avenues for trust amplification,. Both avenues built on unexplained but
nevertheless empirically observed asymmetries—one between proof genera-
tion and proof checking, the other between public key encryption and public
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key decryption:

• Taking language-based security the next step, by further developing
the Cyclone type-safe variant of C and by marrying certifying compila-
tion with program analyzers and IRM rewriters as a means of making
language-based enforcement technologies more trustworthy.

• Combining proactive secret-sharing and threshold cryptography in con-
nection with quorums for replication-management as a means of imple-
menting trustworthy services in settings satisfying only weak assump-
tions.

Accomplishments

Cyclone. Implementation errors, such as buffer overruns, memory leaks,
and integer overflows account for an alarming number of successful attacks.
To address these concerns, the project developed a type-safe variant of C
called Cyclone. The Cyclone language retains the familiar syntax and se-
mantics of C code, so that legacy programs can be easily ported to an envi-
ronment with the same strong security guarantees of modern languages such
as Java.

The original version of Cyclone used a combination of static type-checking
and run-time tests to detect and prevent implementation errors. To minimize
run-time overhead—and to decrease the probability of run-time failure—
this project extended the compiler with support for extended static checking
(ESC).

The ESC component of the Cyclone compiler was first used to eliminate
run-time checks that could not be eliminated through the static type system,
including checks on array subscripts, pointer arithmetic, etc. This was ac-
complished by first constructing a verification condition—a logical assertion
whose validity ensures that the run-time check will never fail. The verification
conditions for each check were then fed to a custom theorem prover. When
the theorem prover could successfully prove the verification condition, the
corresponding check was eliminated. When the prover could not discharge
the verification condition, a warning was issued to the programmer.

The primary challenges in this effort were (i) making the verification con-
dition generation scalable and precise and (ii) finding fast but sound heuris-
tics for the theorem prover. For instance, previously proposed algorithms
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could generate verification conditions exponentially larger than the original
source code. The project developed a new algorithm that ensures the condi-
tions are quadratic in the size of the source in the worst case and linear in
practice.

Once these hurdles were overcome, the compiler was able to automatically
eliminate 96% of the run-time checks in the roughly 80,000 lines of Cyclone
code that make up the standard libraries and compiler. Furthermore, the
additional analyses and transformations only added 2% overhead to compile
times.

Inlined Reference Monitors. In earlier work, PI Schneider developed a
model of enforceable security policies and showed that, in principle, all such
policies could be realized using some form of a reference monitor. A reference
monitor observes system execution and blocks actions that would violate a
desired security policy. Today, most reference monitors are implemented
by an operating system using hardware-enforced primitives. However, the
class of policies that can be directly enforced using hardware mechanisms
is severely limited because the machine has no knowledge of application-
level semantics, only limited opportunity to intervene, and few provisions for
extending policies to cover new situations.

To overcome these limitations, a more general class of enforcement mech-
anisms based on inlined reference monitors (IRMs) was studied under the
auspices of this funding. An IRM tool takes a policy and rewrites untrusted
code, inserting checks and actions that ensure the resulting code will re-
spect the policy when executed. Inlining the monitor’s code allows it to have
complete access to the internals of the application, and allows it to tailor
the policy to the application and its abstractions. Furthermore, the IRM ap-
proach makes it possible to insert corrective actions instead of simply halting
the application.

Building on Schneider’s earlier work, the project developed a more re-
fined characterization of what policies can be enforced using inlined reference
monitors. Specifically, the PIs developed a model based on standard Turing
machines, adapted Schneider’s criteria for enforceable security policies, and
introduced computability requirements. Static analysis and classical refer-
ence monitors were also integrated into the model. This allowed comparing
the relative power of the various enforcement mechanisms and relating the
power of these mechanisms to standard computability results. For instance,
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it was relatively easy to show that the class of policies precisely supported
by static analysis could also be supported by both classical and inlined ref-
erence monitors. In addition, introducing a computability requirement on
reference monitors was found to be necessary, but not sufficient, for precise
characterization of the class of policies they can actually realize. And a new
property, called “benevolence” was identified; it provides a more accurate
upper bound on the power of reference monitors.

The most surprising and important results obtained concern the general
framework of IRMs. The class of policies originally characterized by Schnei-
der was shown not to include all policies enforceable through IRMs (and vice
versa). Indeed, the class of policies enforceable through IRMs was shown
not to correspond to any class of the Kleene hierarchy. This is a surprising
and an important result, because it shows that inlined reference monitors are
truly a powerful security enforcement technique.

In addition to a theoretical study of IRMs, a number of practical issues
were studied too. For instance, to achieve acceptable performance, an IRM
rewriter needs to perform a number of sophisticated optimizations so that
checks and IRM state updates are inserted only where needed. Furthermore,
an IRM rewriter must be careful to ensure that the integrity of the reference
monitor cannot be violated by untrusted code. In practice, this means IRM
rewriters are relatively large tools (similar to compilers) that undoubtably
contain bugs, and thus should not be trusted.

To address this concern, the project combined the ideas behind proof-
carrying code (PCC) with IRM rewriting and developed a certified IRM
rewriter framework for Microsoft .NET code. In this framework, the rewriter
produces explicit evidence that enables an independent proof checker to de-
termine that the rewritten code respects the desired security policy. The
proof checker is relatively small compared to rewriters and is therefore likely
to be more trustworthy.

The evidence that the rewriter provides to the checker is in the form of
extended typing annotations. A model of the .NET intermediate language
was constructed along with a proof that, given proper evidence that the pro-
gram type-checks (under the extended type system), any execution sequence
of the code will respect the policy.

Implementing Trustworthy Services. To be trustworthy, a service must
tolerate failures and attacks. The means to build fault-tolerant services has
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been at hand for some time—replication of servers on independent hosts.
Scaling that up to handle attacks was a third research focus of this grant.
In particular, although server failures are often observed to be independent,
independence in the presence of attacks is typically not seen. An adversary
that disrupts one replica will probably be able to exploit the same vulner-
ability at other replicas and disrupt them as well—having 2f + 1 replicas
might tolerate up to f faulty hosts, whereas all hosts (hence all replicas)
would succumb to a single attack.

Server diversity thus is central to implementing trustworthy services with
replicated servers. Such diversity can be introduceed automatically during
compilation, loading, or in the run-time environment by using an obfuscator,
which transforms a base program into a morph according to some semantics-
preserving transformations. Different subsets of these transformations yield
different morphs, with many of the transformations themselves being non-
deterministic. An obfuscation key input to the obfuscator determines the
exact transformations used for computing a specific morph, and two different
obfuscation keys are likely to produce unpredicatably different morphs of the
same base program.

Use of an obfuscation key not known by attackers defends against attacks
that work by exploiting detailed knowledge of base server code. But over
time, details of a morph’s code could become known to attackers, so simply
running different morphs on each server is not sufficient. This is just the well
known failing of the oft-maligned “security by obscurity”. There is, however,
a promising defense available—proactive execution of obfuscation, whereby
each server periodically selects a fresh (secret) obfuscation key, computes a
new morph, and executes that morph for its next window of vulnerability.

Two classes of questions had to be addressed in getting proactive obfusca-
tion to work; that drove the research. First, were questions about protocols
to ensure that morphs would be terminated and restarted in a way that re-
sisted compromise by attackers. The needs here were not being addressed
by extant agreement protocols, because morphs have their storage purged
and reloaded (to eliminate undetectably compromised code and data) at the
start of each window of vulnerability. Not only were such amnesia-insensitive
agreement protocols developed as part of this project, but a firewall that em-
ploys proactive obfuscation was designed and prototyped. Having the pro-
totype allowed different protocols to be explored and ensured that protocol
design was grounded in the realities of an actual system context.

The second class of problems concerned foundations of the approach:
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What classes of attacks would be blunted by proactive obfuscation? Specific
correspondences between classes of transformations and classes of attacks
they defend against was known at the start of this project. But although
knowing this correspondence is important when designing a set of defenses
for a given threat model, knowing the specific correspondences is not the
same as knowing the overall power of mechanically-generated diversity as a
defense. This project explored that latter, broader, issue, by

• giving a semantics for proving results about the defensive power of
obfuscation;

• giving a precise characterization of attacks, applicable to viewing di-
versity as a defense;

• developing the thesis that mechanically-generated diversity is compa-
rable to type systems, and deriving an admittedly unusual type system
equivalent to obfuscation in the presence of finitely many keys;

• exhibiting, for a C-like language and non-trivial obfuscator, an increas-
ingly tighter sequence of type systems for soundly approximating ob-
fuscation under arbitrary finite sets of keys. Surprisingly, the more
accurate type systems are based on information flow. No type system
corresponds exactly to the obfuscator under arbitrary finite sets of keys,
and therefore approximations are the best that can be achieved.
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